摘要
智能故障诊断技术为保障工程技术系统的可靠性和安全性开辟了新的途径,随着系统设备和功能的日益复杂化,发生故障的机率以及由此带来的损失越来越大,现有单一、固定的故障诊断方法却难以满足复杂系统诊断的全部要求。该文针对复杂系统故障现象的特点,分析了现有基于规则、基于结构和行为、案例、模糊逻辑、神经网络及其集成知识诊断技术的各自特点和局限性,指出了机器学习对于当前复杂系统智能故障诊断发展的重要性,有利于改变现有单一、固定的故障诊断思维,并对未来的主要发展方向进行了一些探讨。
-
单位重庆大学; 自动化学院