摘要

针对传统网络资源缺失信息碎片识别方法中识别准确度较低、完成时间较长、能量消耗较大等问题,提出一种基于大数据分析的网络资源缺失信息碎片识别方法。通过对网络资源信息分析,利用非线性时间序列对网络资源不完整信息进行相空间重建,引入关联维数对网络资源不完整信息特征提取;考虑到不完整信息特征中缺失信息碎片对信息类别的贡献度,利用信息熵来衡量缺失信息碎片之间的差异,利用以BP神经网络为基础的集成分类器对缺失信息碎片分类,完成缺失信息碎片识别。结果表明,所提方法识别准确度较高、完成时间较短、能量消耗较小。

  • 单位
    现代教育技术中心; 商丘医学高等专科学校