摘要

针对现有雷达信号预分选方法对参数捷变雷达信号分选准确率不高的技术难题,提出了一种基于深度学习算法的全连接神经网络与时域校验的雷达信号预分选方法。该方法首先提取雷达数据库中已知雷达信号的载频、脉宽和脉内调制信息作为单脉冲分选特征,使用全连接神经网络完成单脉冲的识别。为了避免神经网络将未在雷达数据库中的信号(未知雷达信号)识别为已知雷达信号,在神经网络的输出层中加入置信度神经元生成置信指数,将置信指数低于阈值的判定为未知雷达信号进行剔除。最后根据分选结果调用雷达数据库中对应的时域信息(脉冲重复间隔),进行时域校验,完成雷达信号预分选。仿真结果表明,该方法在不同信噪比环境下对参数捷变雷达信号有较高的分选准确率,并且能有效剔除未知雷达信号。

  • 单位
    中国船舶重工集团公司第七二四研究所