摘要

针对无线网络流量数据预测精度不高问题,提出一种基于蝙蝠算法(BA)优化的反向传播(BP)神经网络的分类预测模型——BABP。通过采用蝙蝠算法对BP神经网络模型的初始权值与阈值进行全局寻优,构建崭新的基于蝙蝠算法优化的神经网络模型。通过与基于传统寻优算法遗传算法(GA)与粒子群优化(PSO)算法的反向传播(BP)神经网络模型比较,在无线网络流量数据的分类预测和稳定性方面,提出的BABP模型要优于GABP模型、PSOBP模型;同时,无论迭代次数的多与少,BABP均比GABP、PSOBP算法更快地收敛。实验结果表明,BABP模型在预测精度、寻优速度以及模型稳定性等方面均比GABP、PSOBP模型更具优势。