摘要

集群动力学是软物质领域的研究热点和前沿视角,集群运动的同步机制存在着丰富的潜在规律和应用价值。该文构建了一种基于加权集群动力学的图网络模型,该模型从粒子的位置、运动方向特征以及邻居的影响中学习集群运动的演化机制,可以实现对集群运动过程的长期预测。实验结果表明,图网络模型可以对集群运动过程中的序参量进行预测,涵盖不同的噪声和视野半径,预测效果较好。模型构建后,无需进行复杂的动力学模拟和计算,就可以得到不同条件参数下集群运动系统序参量的值,从而快速量化集群运动的同步程度,节省时间成本,对集群的智能控制具有重要意义。