摘要

为了改善印刷电路板(PCB)图像的视觉效果,提出基于图像分解的自适应加权L1范数和L2范数的PCB图像去噪算法。首先,将PCB噪声图像分解为结构和纹理两部分,其次设计一个自适应加权L1-L2范数正则化去噪模型。由于结构部分主要是分片平滑区域,体现PCB图像的整体框架,适合用L2范数各向同性去噪模型。纹理部分主要是高频信息,体现PCB图像的细节特征,适合用L1范数各向异性扩散正则化去噪模型。针对结构和纹理两个不同部分,设计自适应权函数,自动调整L1-L2范数正则化去噪模型中L1范数和L2范数的权值,然后,利用Bregman迭代算法得到最优的去噪效果。实验结果表明:与近年以来的相关经典去噪算法相比,利用新算法所得去噪图像的主观视觉效果更好,客观评价指标中的结构相似度可以提高27%以上,信噪比可以提高1 d B以上。