摘要

在现有的属性抽取研究中,注意力建模多采用全局或局部的自注意力机制,未能较好地利用句子本身所含有的情感词信息。然而,句子中所需抽取的属性大多存在若干与其具有强相关性的情感词。因此,利用情感词辅助注意力的建模可增强注意力的准确性。该文提出一种融合情感词的交互注意力机制,将文本中所有的情感词按序排列,并通过双向长短时记忆网络编码原始文本,利用全连接神经网络和高速网络编码排列的情感词;然后,利用情感词编码与原始文本编码建模交互注意力,从而使模型在情感词的辅助下精确地定位文中所包含的属性;最终,使用条件随机场进行属性标记。该文利用2014、2015语义评估属性级情感分析官方评测数据进行实验,验证了上述方法的有效性,该方法在三个基准数据集上F1值分别提高了5.53、2.90和5.76个百分点。