摘要
遥感技术是研究土地覆盖类型的重要手段,但大部分研究仅采用单一数据源、少特征,分类精度低,该研究基于GEE环境对多源遥感数据、多特征协同进行地物类型分类研究。采用哨兵一号(Sentinel-1)合成孔径雷达数据、哨兵二号(Sentinel-2)多光谱数据和国产高分二号(GF-2)多光谱数据,构建了青海省诺木洪地区地表8类地物的波段特征、植被指数特征、纹理特征和极化特征空间,利用特征优化算法和随机森林(Random Forest,RF)算法实现了研究区域地物的有监督分类,以此评估构建的多特征空间性能及多源数据协同分类的能力。结果表明,基于Sentinel-1与Sentinel-2数据源,使用多特征空间协同分类时的总体精度和Kappa系数可达到97.62%和0.971 6,精度均高于使用单一数据或部分特征的分类精度(总体精度为95.91%,Kappa系数为0.951 1)。而基于Sentinel-1、Sentinel-2与GF-2数据提取的波段、植被指数、纹理特征和极化特征进行的协同地物分类结果总体精度达到了96.67%,Kappa系数达到了0.960 2。总体上,基于多数据源、多特征协同分类结果精度要优于单一数据源或少特征分类结果,而不同空间分辨率图像提取的纹理特征对分类结果有着不同影响,在适宜的分辨率下提取纹理特征参与分类才能达到更好的效果。
- 单位