摘要

针对目前传统野生植物识别算法存在的耗时长、精度低等问题,提出一种基于ResNet101网络和迁移学习的方法。将在ImageNet数据集上训练好的参数应用于数据扩充后的野生植物数据集,同时考虑微调第5组卷积块、添加Dropout正则化和批量正则化技术、优化网络结构参数的方式对原有网络进行改进。测试结果表明,该方法对野生植物图像的识别准确率达到85.6%,较原ResNet101模型识别准确率增加约7个百分点,在提高模型识别精度方面效果较好,具有一定的指导意义。