摘要

鲁棒主成分分析(RPCA)是一种经典的高维数据分析方法,可从带噪声的观测样本中恢复出原始数据。但是,RPCA能工作的前提是目标数据拥有低秩矩阵结构,不能有效处理实际应用中广泛存在的非低秩数据。研究发现,虽然图像、视频等数据矩阵本身可能不是低秩的,但它们的卷积矩阵通常是低秩的。根据这一原理,提出一种称为卷积鲁棒主成分分析(CRPCA)的新方法,利用卷积矩阵的低秩性对原始数据的结构进行约束,从而实现精确的数据恢复。CPRCA模型的计算过程是一个凸优化问题,通过乘子交替方向法(ADMM)来进行求解。通过对合成数据向量以及真实数据图片、视频序列进行实验,验证了该方法相较于其他算法如RPCA、广义鲁棒主成分分析(GRPCA)以及核鲁棒主成分分析(KRPCA)在处理数据非低秩问题上优越性。