摘要
TransC是一种高效的知识图谱嵌入方法,通过区分概念和实例来建立概念、实例及关系的嵌入。TransC将概念编码为球体,球体半径被随机初始化并在训练中迭代更新。由此导致模型出现两个问题:一是训练得到的部分球体半径与模型训练目标不符;二是忽略了概念本身提供的语义信息。针对上述两个问题,该文提出了TransIC模型,首先,基于IC参数给出新的概念球体半径求解方法,使求得的半径满足TransC目标,并且丰富了概念嵌入向量的语义信息。其次,该模型以TransC为基础,在概念编码阶段引入基于IC参数的概念球体半径。最后,在公开的数据集YAGO39K上完成链接预测和三元组分类两个任务,并将该文方法实验所得性能与TransC及其他模型的性能进行对比。结果表明,TransIC在多数指标上均取得显著提升。
- 单位