摘要
为提升电力系统中智能客服系统的效率,降低人工成本,提出一种基于长短时记忆网络(Long Short-Term Memory,LSTM)的情绪识别方法。首先利用词嵌入(Word Embedding)方法提取出对话内容的特征表示,并根据先验知识添加情感特征,生成具有情绪语义的词向量。基于双向长短时记忆网络训练得到情绪分类模型,将问题解决的需求分为紧急、一般与非紧急三个级别,并可将分类结果用于优先级自动调度决策中,判断是否应立即接入人工服务。在真实的电力客服对话平台数据集上对算法在准确度和响应时间两个方面进行测试,实验结果表明,算法对情绪的识别准确率达到了较高的水平,且响应时间可以满足系统实时处理的需求,有较高的实用性。
-
单位国家电网有限公司