摘要
半导体光催化技术是利用太阳能消除有机污染物的最佳解决方案之一.二氧化钛(TiO2)是在该领域应用最广泛的光催化剂,具有无毒、廉价、抗光致腐蚀等优异性能.然而,纯TiO2在可见光下的光催化活性较差,这限制了TiO2光催化技术的进一步发展和实际应用.对此,学者们进行了多方面研究来拓展TiO2对可见光的吸收范围并提升其光催化活性.研究表明,对TiO2进行碳掺杂是拓展其光吸收范围和增强其可见光催化活性的有效方法.粉煤灰是燃煤电厂原煤燃烧产生的一种固体废物.粉煤灰的随意堆积和不适当处置可导致土壤、空气、水甚至生态系统的严重污染.因此,粉煤灰的回收利用引起了许多研究者的关注.事实上,粉煤灰有其自身独特的优点,如无毒、低成本和化学/物理稳定性等.这些性质使得粉煤灰可以作为一种很有前景的催化剂载体材料.最近,很多学者以粉煤灰为载体合成了多种TiO2/粉煤灰复合光催化剂,并对所制备催化剂的结构、性质及其光催化性能进行了研究.但是,将碳掺杂TiO2与粉煤灰进行耦合的研究一直未见报道,而且关于粉煤灰载体对TiO2光催化活性的促进机理,特别是粉煤灰负载对TiO2能带结构及其光催化活性的影响仍缺乏深入和系统的研究.本文采用简单的溶胶浸渍+炭化的方法制备了碳掺杂TiO2/粉煤灰载体(C-TiO2/FAS)复合光催化剂.其中的碳掺杂组分源于合成过程中加入的有机成分(钛酸四丁酯、乙酸和乙醇),在负载及炭化过程中这些有机组分同步进入TiO2体相及表面形成碳掺杂.采用多种表征方法对所制备的光催化剂进行了表征. XRD, SEM和XPS表征结果表明, C-TiO2组分很好地包覆在粉煤灰球形颗粒表面.XPS和ATR-FTIR表征结果表明,随着C-TiO2与FAS的耦合,C-TiO2表面原有的羧基螯合结构被破坏,并在其界面上形成了Si–O–C和Al–O–Ti键.UV-VisDRS和VB-XPS表征结果表明,碳掺杂缩减了TiO2的禁带宽度,显著拓展了光吸收范围.Si–O–C和Al–O–Ti键的存在引起了C-TiO2价带边的正向移动,意味着光生空穴氧化能力增强.稳态PL及时间分辨PL表征结果表明, C-TiO2/FAS光生载流子的复合率较低.在可见光催化活性测试中, C-TiO2/FAS对甲基橙展示出较高的光催化降解效率,这主要是由于C-TiO2/FAS较低的价带位置增强了光生空穴的氧化能力,进而提高了催化剂对甲基橙的降解效率.自由基捕获实验结果表明,在降解过程中光生空穴及超氧自由基是关键活性物种.此外,C-TiO2/FAS可以很方便地通过自然沉降进行固液分离,并表现出很好的重复利用降解活性.
- 单位