摘要
精确有效的发酵过程模型不仅能够定量揭示过程信息间的关联,实现对难以实时监测变量的预测,而且是进一步控制和优化的前提;基于数据驱动的发酵过程建模方法得到了广泛研究与应用,然而其仅考虑发酵过程的非线性特征和数据具有多采样率的特点,忽略了过程数据中测量噪声对模型的影响;为此,提出基于栈式降噪自编码器的发酵过程回归建模方法,该方法不仅具有较强的非线性拟合能力,半监督的学习策略也能够充分挖掘发酵过程中的所有数据信息,同时可以从含噪声的过程数据中提取出鲁棒性的特征,使模型具有噪声适应性;通过青霉素仿真对比实验结果表明,该模型的预测性能更好。
- 单位