论文通过用户在一系列时间节点对所借阅图书的评分形成用户兴趣序列,并提取用户之间的最长公共兴趣子序列(LCSIS)和所有公共兴趣子序列(ACSIS),以此为基础计算用户之间的相似性并与传统的协同过滤推荐方法相结合,提出了基于用户兴趣序列的改进协同过滤图书推荐方法。将本文提出的方法和传统的基于用户的协同过滤推荐方法在天津医科大学图书馆图书借阅数据集进行实验验证,结果发现该方法在推荐效果上优于传统方法。