摘要

已有的链路预测算法主要是基于目标网络结构信息的,没有考虑到与目标网络相关的文本信息。针对此问题,提出一种基于网络节点文本增强的链路预测算法。将网络节点的文本内容融入到网络表示学习过程中,使学习得到的网络表示向量中含有节点的文本属性。通过余弦相似性算法构建出目标网络的相似度矩阵。在3个真实的数据集上做链路预测仿真实验。实验结果显示,相比于现存的多种链路预测算法,该算法预测结果的精确度有明显提升,同时能够有效且准确地挖掘网络中节点间的结构关联性和内部相关性。