摘要

在进行加权社会网络低维冗余数据挖掘时,由于加权社会网络稳定性低,且挖掘聚类效果差,导致挖掘耗时长与挖掘精度较低,因此设计加权社会网络低维冗余数据快速挖掘算法。构建加权社会网络模型,提升该网络稳定性的同时对收集到的数据进行可视化分析。通过特征选择获取数据冗余特征,计算出低维冗余聚类数据的支持度,利用支持度与可信度对低维冗余数据关联规则进行评价,并按照直接属性对其限制,大幅度减少无用规则的产生。通过属性位复用方法建立候选区域,生成关联规则集,对符合关联规则集的低维冗余数据进行聚类,从而实现数据的快速挖掘。仿真结果表明:所提方法的挖掘聚类效果好、挖掘精度高、耗时短,具有可行性。