摘要

准确识别电子商务信用风险,有利于提高企业风险防范能力,减少损失.建立了基于粗糙集(RS)、遗传算法(GA)和支持向量机(SVM)的电子商务信用风险分类模型(RS-GA-SVM).首先,利用RS对分类指标进行约简,选择出电子商务信用风险关键影响因素.其次,采用GA算法优化SVM模型参数,并应于电子商务信用风险分类.最后,实证表明,RS-GA-SVM模型具有高的分类精度和分类效率.