摘要
文章通过介绍广义回归神经网络(GRNN)的原理及其非线性拟合的能力,建立了基于GRNN的船舶阻力预测模型。本文将该模型运用到Taylor系列船舶剩余阻力预测中,得出预测结果。通过与实际阻力比较,得出预测阻力的相对误差在5%之内的百分比为93.98%,最后本文通过预测插值后的数据,得出相对误差在5%以内占85.38%。由此可以看出,GRNN预测船舶阻力有很高的精度和较强的泛化能力,为船舶阻力的预测提供了一种简便的预测方法。
- 单位
文章通过介绍广义回归神经网络(GRNN)的原理及其非线性拟合的能力,建立了基于GRNN的船舶阻力预测模型。本文将该模型运用到Taylor系列船舶剩余阻力预测中,得出预测结果。通过与实际阻力比较,得出预测阻力的相对误差在5%之内的百分比为93.98%,最后本文通过预测插值后的数据,得出相对误差在5%以内占85.38%。由此可以看出,GRNN预测船舶阻力有很高的精度和较强的泛化能力,为船舶阻力的预测提供了一种简便的预测方法。