摘要
针对压缩感知在电能质量信号压缩重构方面存在前期稀疏处理过程繁琐、观测矩阵设计困难、压缩重构速度慢等缺点,首次提出一种基于生成对抗网络模型的电能质量信号压缩重构方法。该网络模型由生成器和鉴别器组成。生成器学习样本分布的特性,经过训练后应用到电能质量信号的压缩和重构过程中。鉴别器与生成器相互对抗以提高彼此性能。此外,该方法在原损失函数中加入重构损失和频域损失,进一步提升重构效果。实验结果表明,提出的压缩重构方法不仅避免了前期对信号进行稀疏处理,而且具有重构效果好、重构速度快、稳定性更强的优势。
- 单位