摘要
本发明提出了一种基于非负矩阵分解和多样#一致性的多视图聚类方法,用于解决现有多视图聚类方法中存在的聚类精度和归一化交互信息较低的技术问题,实现步骤为:获取原始图像集的归一化非负多视图数据;构建多视图数据对应的基矩阵、系数矩阵和类标指示矩阵;构建基于非负矩阵分解和多样#一致性多视图聚类的目标函数;获取基矩阵、系数矩阵和拉普拉斯矩阵的迭代更新表达式;获取类标指示矩阵的最优值;对类标指示矩阵的最优值进行K#均值聚类,得到多视图数据对应的聚类簇。本发明利用表示多样性和类标一致性,学习多视图数据中的互补和公共信息,有效提高了多视图聚类的性能,可应用于生物信息分析和金融投资分析等领域。
- 单位