摘要
针对现有的度量学习方法存在训练参数多,容易导致过拟合和鲁棒性差的问题,提出一种成对约束组合度量学习方法(pairwise constrained compositional metric learning, PCCML),利用数据集中生成的局部判别度量,学习各组份度量的最优权重组合。在大边距框架下,PCCML通过约束正样本对马氏距离小于较小的阈值,负样本对马氏距离大于较大的阈值,有效提高了鉴别精度。在KinFaceW-I和KinFaceW-II基准数据集上的试验结果表明了所提出的PCCML方法对鉴别亲属关系问题的有效性。
- 单位