摘要

针对传统旋转机械损伤识别方法存在模型精度低和抗噪性差的问题,提出了一种基于复合多尺度注意熵(CMATE)和随机森林(RF)的旋转机械多工况损伤识别方法。首先,提出了一种新的测量时间序列复杂度的非线性动力学工具——复合多尺度注意熵;然后,利用CMATE提取旋转机械振动信号的损伤特征,其表征了旋转机械不同工况下的损伤特性;接着,将损伤特征输入至基于随机森林构造的多类别分类器中,进行了损伤识别;最后,采用滚动轴承-齿轮箱、齿轮箱和离心泵3种旋转机械数据集,并分别构造了9种工况和20种工况的多工况损伤数据集,对该损伤识别方法进行了实验研究。研究结果表明:该旋转机械损伤识别方法分别取得95%、97%和100%的识别准确率,在准确率和特征提取效率两方面优于其他的非线性动力学工具;并且在0 dB、1 dB、2 dB和3 dB这4种不同信噪比的噪声干扰下,依然取得了不错的损伤识别结果,证明了该模型具有可观的抗噪性;同时,该损伤识别方法能够稳定地识别旋转机械的不同负载和转速下的损伤,平均识别准确率分别达到了97.2%和93.5%,具有较好的实际应用潜力。

  • 单位
    台州科技职业学院; 山西师范大学; 福州外语外贸学院; 长治职业技术学院