摘要

<正>对于一般函数的极值点,教学中多借助几何直观,用自然语言给出函数极值点的描述性定义:若函数f(x)图象在点P(x1,f(x1))处从左侧到右侧由"上升"变为"下降"(函数由单调递增变为单调递减),我们就称f(x1)为函数f(x)的一个极大值,x1为函数f(x)的一个极大值点;类似的,若函数f(x)图象在点P(x2,f(x2))处从左侧到右侧由"下降"变为"上升"(函数由单调递减变为单调递增),我们就称f(x2)为函数f(x)的一个极小值,x2为函数f(x)的一个极小值点.该定义给出了判断极值点的充要条件,揭示了一般函数极值点的本质特征:极值点附近左侧与右侧函数单调性相反[1].