摘要

传统机器学习方法泛化性能不佳,需要通过大规模数据训练才能得到较好的拟合结果,因此不能快速学习训练集外的少量数据,对新种类任务适应性较差,而元学习可实现拥有类似人类学习能力的强人工智能,能够快速适应新的数据集,弥补机器学习的不足。针对传统机器学习中的自适应问题,利用样本图片的局部旋转对称性和镜像对称性,提出一种基于群等变卷积神经网络(G-CNN)的度量元学习算法,以提高特征提取能力。利用G-CNN构建4层特征映射网络,根据样本图片中的局部对称信息,将支持集样本映射到合适的度量空间,并以每类样本在度量空间中的特征平均值作为原型点。同时,通过同样的映射网络将查询机映射到度量空间,根据查询集中样本到原型点的距离完成分类。在Omniglot和miniImageNet数据集上的实验结果表明,该算法相比孪生网络、关系网络、MAML等传统4层元学习算法,在平均识别准确率和模型复杂度方面均具有优势。

全文