摘要
大气中二氧化碳(CO2)浓度的不断攀升已经造成了日益严重的环境问题。作为一种丰富、廉价、无毒以及可再生的一碳资源,CO2在化学合成领域的利用是目前的研究热点,利用CO2制备高分子材料更是引起了大家的广泛关注。然而由于其较低的反应活性,只有极少量的CO2聚合反应被报道。目前被广泛研究的是CO2和环氧单体的共聚反应,而CO2与炔类单体的聚合则鲜有报道。相比于烯类单体,炔类单体是另一类重要的单体,具有更加丰富的化学性质。一般炔类单体聚合得到的聚合物通常含有不饱和化学键,从而具有特殊的光电性质。因此,本文主要是开发基于CO2和炔类单体的新型聚合反应,并制备一系列功能聚合物。在第二章中,我们首先建立了常压下CO2和端炔以及卤代烷烃单体的聚合反应。该聚合反应利用双功能催化剂钨酸银进行催化,在温和条件下即能够以高产率得到高分子量的聚炔酯。得到的聚炔酯可以被苄胺以100%的接枝率后修饰。此外,我们还利用该聚合反应制备低分子量的遥爪聚合物,并实现其进一步聚合得到更高分子量的聚炔酯。该聚合反应具有很好的官能团耐受性,可以将具有聚集诱导发光(AIE)特性的四苯基乙烯(TPE)、四苯基吡嗪(TPP)以及噻咯基元引入聚合物主链中,得到同样具有AIE特性的聚炔酯。所制备的聚合物薄膜的绝对荧光量子效率最高可达61%。另外,由于主链含有大量酯基,聚炔酯在碱性条件下具有很好的降解性能。在第三章中,我们在前一章工作的基础上引入第四单体——胺类单体,成功开发了一种基于CO2的简便高效的“一锅、两步、四组分”串联聚合反应。该反应在第一步CO2和端炔以及卤代烷烃单体聚合完成之后,不经过分离提纯直接加入胺类单体,最终得到具有区域和立构规整性的聚烯胺酯。我们还采用不同的单体组合,制备得到不同主链结构的聚烯胺酯,展现出不同的热学性质。TPE的引入使聚合物具有典型的AIE现象,其在聚集态的高效发光以及主链富含氮原子的特性,可被应用于爆炸物的灵敏检测。在第四章中,我们通过多官能团端炔单体制备了超支化聚炔酯,通过核磁共振(NMR)和傅里叶变换红外(FT-IR)表征可以看出,聚合物外围还有大量未反应的端炔基团。通过对核磁谱图的分析计算,我们可以算出聚合物的支化度为0.61,大于传统的超支化聚合物。由于超支化聚炔酯含有大量炔酯和端炔基团,可以对其进行精确多步后修饰,最终得到结构和序列可控的超支化聚烯胺酯,每一步后修饰转化率都接近100%。在第五章中,通过引入小分子化合物苯甲脒,我们实现了线形、超支化和交联聚炔酯的精确、快速和可视化降解,得到结构明确的功能化咪唑酮。我们采用在线红外详细研究了降解反应的动力学过程,发现温度会显著影响降解速率,三丁基膦(Bu3P)的用量对于降解速率有很大的影响,而苯甲脒的用量基本不会影响降解速率。我们可以通过反应体系的荧光强度变化来监测降解反应进程。利用高效快速的降解反应,我们实现了在宏观和微观尺度下的清晰可见的图案制备。由于独特的咪唑酮结构,降解产物可被用于三价金离子的特异性检测和吸附。在第六章中,我们开发了一种温和高效的CO2,二炔醇和芳基二卤化物的“一锅、三组分”聚合反应用于制备五元环状碳酸酯(5CC)基聚合物。通过密度泛函理论计算和在线红外监测,我们深入探究了聚合反应机理,结果表明CO2、二炔醇和芳基二卤化物之间存在协同反应效应。此外,5CC基聚合物还可以很容易地被二级胺进攻从而100%区域选择性开环。由于其优异的官能团耐受性,TPE和联萘基团可以很容易地引入聚合物主链中,以赋予聚合物独特的AIE和手性特性。我们还通过多种单体策略制备超支化聚合物,并成功开发出具有较大的比表面积的多孔聚合物。在第七章中,我们开发了CO2和芳基内炔以及卤代烷烃单体的多组分串联聚合反应。该聚合反应可以在常压CO2氛围下进行,很短时间内即能够以高产率得到高分子量的聚烯酯。该聚合反应普适性好,溴代或者碘代烷烃都表现出很高的反应活性。当引入TPE基团时,聚合物表现出聚集诱导增强荧光(AEE)的特性。在最后一章中,我们将同样廉价、丰富、无毒和可再生的氧气(O2)作为一种重要单体,成功开发出其与炔类单体的新型聚合反应。该聚合反应采用N,N-二甲基乙酰胺(DMAc)和全氟萘烷(C10F18)的混合溶剂体系,通过醋酸钯(Pd(OAc)2)和氯化锌(ZnCl2)的共同催化作用,以高产率制备得到高分子量的多取代聚呋喃。通过分析模型反应产物的组分,我们可以确定聚合物中不同重复单元的比例。此外,P1(6)可以被用作爆炸物检测的荧光探针,具有超放大猝灭效应。而共轭聚合物P2-P5具有大的双光子吸收截面,最高可达1570 GM,显示出作为双光子吸收材料的巨大潜力。总之,我们开发了一系列新型高效温和的CO2/O2和炔类单体的聚合反应。它们可以在常压氛围下,采用廉价易得的商业化催化剂进行催化,通过灵活的单体设计制备一系列新型功能性聚合物,为CO2和O2的化学利用开辟了新的途径。
- 单位