摘要

本发明公开了一种基于特征一致性学习的船舶目标自动标注方法,包括步骤:1)利用已标注的和未标注的船舶样本构建船舶数据集,并对其中的船舶样本进行数据增强;2)构建船舶特征判别模型,利用船舶数据集进行基于特征一致性学习的模型训练;3)在模型训练过程中,计算船舶样本的对抗扰动并优化;4)利用已训练好的船舶特征判别模型对未标注的船舶样本进行伪标注;5)利用船舶样本的伪标注重复进行模型训练直到收敛,输出最终的伪标注。本发明利用多样性的船舶数据,学习鲁棒性的船舶通用特征,实现对船舶目标的自动标注,有效地减少人工标注的成本。