为准确反映办公建筑的运行特性,利用卷积神经网络(CNN)良好的特征提取能力与循环神经网络(RNN)良好的时序学习能力,提出用于预测办公建筑能耗的CNN-RNN组合模型,并对应设计了适用于深度学习模型的二维矩阵数据输入结构.案例分析结果表明,相较于简单循环神经网络和长短期记忆网络,CNN-RNN组合模型的预测精度与计算效率均显著提升,模型泛化性好.