Bézier曲面的表示形式在很大程度上决定了渲染和离散的结果质量.为了改进曲面等参线的正交性,给出了双线性Bézier曲面和双二次Bézier曲面满足曲面等参线正交性的约束条件,以及相应曲面的构造方法.首先提出了具备正交等参线的双线性曲面只能是矩形;对于双二次Bézier曲面,通过将正交约束多项式的系数设置为0,整理推导出控制顶点需要满足的约束条件,再对每一组约束条件给出满足此约束条件的曲面构造性方法,得到在渲染和离散中的应用结果.纹理映射的实验结果表明,该方法是有效的.