摘要
在现实场景中,传统视觉同步定位与建图(SLAM)算法存在静态环境假设的限制。由于运动物体的影响,传统的视觉里程计存在大量误匹配,从而影响整个SLAM算法的运行精度,导致系统无法在现实场景中稳定运行。基于深度学习和多视图几何,提出一种面向室内动态环境的视觉SLAM算法。采用目标检测网络对动态物体进行预检测确定潜在运动对象,根据预检测结果,利用多视图几何完成运动物体重检测,确认实际产生运动的物体并将场景中的对象划分为动态和静态两种状态。基于跟踪线程和局部建图线程,提出一种语义数据关联方法和关键帧选取策略,以减少运动物体对算法精度的影响,提高系统的稳定性。在TUM公开数据集上的实验结果表明,在动态场景下,相较于ORB-SLAM2算法,该算法平均均方根误差降低了40%,与同样具有运动剔除的DynaSLAM算法相比,算法实时性提高10倍以上,且运行速度与精度均明显提高。
- 单位