摘要
以不同存储时间,同一产地及收获时间的10个玉米品种种子为对象,研究存储时间在玉米单籽粒近红外光谱真实性鉴定中,对近红外光谱分析技术检测结果的影响。利用1月份光谱数据建立品种真实性鉴定模型(单月建模),分别鉴定2到12月的相同品种,原始光谱采用平滑、一阶差分和矢量归一化进行预处理, PLS-DA建立模型进行分析比较,结果显示,正确鉴定率均呈逐月下降的趋势,同一品种的同一种子批,由储藏开始建立的品种真实性鉴定模型已无法对储藏11个月后的该种子批进行高准确度的鉴定,储存时间由1个月增加至11个月时,模型的平均正确鉴别率降低26.27%,这说明玉米种子的存储时间越长将降低应用近红外光谱鉴定品种真实性的鉴定准确度。另外,本研究发现玉米种子存储时间越长,导致同一品种种子样品的光谱数据在空间分布上产生差异,光谱数据离散化更明显,重复性一致性越低,使得玉米种子的真实性鉴定结果的准确性越低。通过扩充建模集中易受干扰的信息的范围,即将1年内在不同时间段里随取样时间变化而导致的在不同环境因素、仪器因素及种子样品等变化因素下采集到的光谱数据,均扩充到建模光谱数据中,以增加根据扩充数据建立的近红外光谱预测模型的包容性。通过1月与2月建模集联合后建立的包容性模型(联合建模),之后分别对2016年3月—12月测试集的样品进行鉴定,之后逐月增加建模集光谱数据,并对非建模集所在月份进行逐月鉴定,以京科968为例,结果表明,模型对建模集相邻月份的测试准确度较高,之后逐月降低。当建模集内加入1到6月份建模集内的特征光谱后,包容性模型的平均正确鉴别率可稳定在92%以上。通过以上方式,对10个玉米品种进行了测试,结果表明,包容性模型对于玉米种子真实性的正确识定率相较于单月模型均有明显提高。J92与XY211的平均正确鉴别率分别提高11.58%与7.71%。将2016年整年的光谱数据均加入包容性模型的建模集中,使测试集玉米杂交种2017年的平均正确鉴别率达到94.68%,自交系达到95.03%,为进一步研发专用模型和实用设备提供基础。
- 单位