摘要
精确的图像分割是完成图像中物体姿态、大小估计的重要步骤,但由于物体的多样性、复杂性等原因,使得图像分割在计算机视觉领域仍然是具有挑战性的任务。针对标准U-Net模型实现端到端的图像分割时精确度不高、训练难以收敛等问题设计了一种基于Gloabl-Local评估方法的U-Net图像分割方法。首先根据同时兼顾全局信息和局部信息能够得到精确的图像分割图,论文提出了Gloabl-Local训练过程易拟合等问题,提出了改进U-Net法和4个公共显著性检测数据集训练改进U-Net网络模型,大大提高了图像分割的准确率。论文的方法平均准确率达到90.74%,与标准U-Net相比具有更好的分割效果。此方法实现了准...
- 单位