土地覆盖分类对于土地资源管理、耕地面积评价、经济评估,甚至国土安全和国家经济稳定具有重要意义.对遥感图像中的土地覆盖进行自动化分类,可以为土地资源管理分析等提供可靠、便捷的技术支持.目前大部分遥感图像分割模型都有模型大、运行环境要求高、分割速度慢等问题,为了解决这些问题,提出了一种轻量化并且高精度的图像分割模型L-NET.在公开数据集WHDLD上测试了L-NET的性能,测试表明L-NET在对比实验中的分割精度、参数量、计算量、运行速度等均为最优.