摘要
针对原人工蜂群算法在寻优过程中存在收敛精度不高、容易陷入局部最优的问题,提出一种改进人工蜂群算法(SWT-ABC)。将社会学中强弱关系模型化并引入多子群矩阵式蜂群结构,定义了强关系个体从三个方向随机引导搜索,加快算法收敛速度和提高收敛精度;为增强算法跳出局部最优的能力,定义了弱关系个体交互以实现子群间信息交流来提升种群多样性;增加侦查蜂反向学习机制并确定合适的蜜源上限,能有效提升目标函数评价次数的利用效率。通过基准测试函数的数值实验并与12种改进算法进行对比,改进后的人工蜂群算法收敛精度更高、全局寻优能力更强,并且在高维优化问题求解中仍具备良好的收敛性能。
- 单位