摘要

本文首先提出一类高阶分裂步(θ1,θ2,θ3)方法求解由非交换噪声驱动的非自治随机微分方程.其次在漂移项系数满足多项式增长和单边Lipschitz条件下,证明了当1/2≤θ2≤1时该方法是1阶强收敛的.此类方法包含很多经典的方法:如随机θ-Milstein方法,向后分裂步Milstein方法等.最后数值实验验证了所得结论.