摘要
在炼油厂轻汽油醚化系统中醇烯比值对烯烃转化率的影响较大,由于实际生产中醇烯比值控制过程具有非线性和大滞后特性,因此传统的PID控制方式对于醇烯比值的控制效果不够稳定。该文提出将基于DEBP算法的模糊神经网络用于轻汽油醚化系统醇烯比值的控制当中。对反应釜内的醇烯比值控制过程构建数学模型,建立模糊神经网络控制器,将差分进化算法与BP算法进行组合形成DEBP算法,利用此算法对模糊神经网络参数进行优化,仿真验证了基于DEBP算法的模糊神经网络控制比传统PID控制效果更好。
-
单位青岛科技大学; 电子工程学院