摘要

为加强自适应遗传算法在高压选择下的全局搜索能力,提出了一种结合天牛须搜索的杂交算法。利用天牛须搜索算子对遗传算法产生的新个体进行局部改良,以增强导向作用和局部搜索能力。采用数据驱动策略改善算法杂交引起的复杂度问题,对不同维度变量进行基于目标函数的灵敏度分析,优化其进化路径从而达到提高算法运行效率的目的。通过定量实验研究算法在桁架尺寸优化问题上的应用效果,并定性分析数据背后的原因展示算法的优点和特点。研究结果表明:在桁架结构尺寸优化研究中,用钢量最低的经济效益方案为2 490.56 kg,与现有元启发式算法研究结果吻合,证实了算法的准确性及有效性;40 000个经济效益方案用钢量平均值为2 491.43 kg,标准差为8.05,收敛率达到98%,与其他元启发式算法相比证实了该算法较高的稳定性。