一种改进的DNN-HMM的语音识别方法

作者:李云红*; 梁思程; 贾凯莉; 张秋铭; 宋鹏; 何琛; 王刚毅; 李禹萱
来源:应用声学, 2019, 38(03): 371-377.

摘要

针对深度神经网络与隐马尔可夫模型(DNN-HMM)结合的声学模型在语音识别过程中建模能力有限等问题,提出了一种改进的DNN-HMM模型语音识别算法。首先根据深度置信网络(DBN)结合深度玻尔兹曼机(DBM),建立深度神经网络声学模型,然后提取梅尔频率倒谱系数(MFCC)和对数域的Mel滤波器组系数(Fbank)作为声学特征参数,通过TIMIT语音数据集进行实验。实验结果表明:结合了DBM的DNN-HMM模型相比DNN-HMM模型更具优势,其中,使用MFCC声学特征在词错误率与句错误率方面分别下降了1.26%和0.20%。此外,使用默认滤波器组的Fbank特征在词错误率与句错误率方面分别下降了0.48%和0.82%,并且适量增加滤波器组可以降低错误率。总之,研究取得句错误率与词错误率分别降低到21.06%和3.12%的好成绩。