摘要
针对机器学习应用于脓毒症预测存在预测准确率低和可解释性不足的问题,提出了利用LIME对基于机器学习的脓毒症预测模型进行可解释性分析。模型由预测和解释两部分组成:预测部分使用XGBoost和线性回归(LR),首先通过XGBoost进行特征提取,再利用LR对提取到的特征进行分类;解释部分使用LIME模型提取出关键的预测指标对模型进行解释。实验结果表明,通过XGBoost+LR模型进行脓毒症预测的准确率为99%,受试者工作特征曲线下面积(AUROC)为0.984,优于单独使用XGBoos(t准确率:95%,AUROC:0.953)和LR(准确率:53%,AUROC:0.556)或者LGBM(准确率:90%,AUROC:0.974),同时通过LIME能有效地提取出前10个最重要的指标,对脓毒症预测模型进行可解释性分析,提高了模型的可信度。
- 单位