在对DBSCN与K-means两种经典聚类算法分析研究基础上,结合中文文本数据的特点,对这两种方法进行结合与改进,提出一种中文文本聚类方法:DKTC。该算法能自动产生簇的个数,且对"噪声"或异常数据不敏感,对数据的输入顺序不敏感,另外,与DBSCAN相比,该算法有更高的处理效率。实验表明,DKTC算法不仅能对中文文本进行聚类,且与传统DBSCN与K-means法相比,聚类效果都有一定程度的改善。