摘要
高分辨率遥感图像变化检测是了解地表变化的关键,是遥感图像处理领域的一个重要分支。现有很多基于深度学习的变化检测方法,取得了良好的效果,但是不易获得高分辨率遥感图像中的结构细节且检测精度有待提高。因此,该文提出融合了边缘变化信息和通道注意力模块的网络框架(EANet),分为边缘结构变化信息检测、深度特征提取和变化区域判别3个模块。首先,为了得到双时相图像的边缘变化信息,对其进行边缘检测得到边缘图,并将边缘图相减得到边缘差异图;其次,考虑到高分辨率遥感图像精细的图像细节和复杂的纹理特征,为了充分提取单个图像的深度特征,构建基于VGG-16网络的3支路模型,分别提取双时相图像和边缘差异图的深度特征;最后,为了提高检测精度,提出将通道注意力机制嵌入到模型中,以关注信息量大的通道特征来更好地进行变化区域的判别。实验结果表明,无论从视觉解释或精度衡量上看,提出算法与目前已有的一些方法相比,具有一定的优越性。