摘要

研究时标上非线性项包含低阶导数的p-Laplacian三点边值问题:(φp(u~Δ(t)))v+h(t)f(t,u(t),u~Δ(t))=0,t∈(0,T)T,u(0)=0,u(η)=u(T)伪对称解的存在性,其中η∈(0,T)T且T在[η,T]T上是对称的,p>1,φp(u)=up-2u.利用伪对称技巧和锥上的五泛函不动点定理证明了边值问题至少有3个正的伪对称解.作为应用,给出例子验证了所得结果.所得结论在相应的微分方程(T=R),差分方程(T=Z)以及通常的时标上都是新的.

  • 单位
    徐州工程学院