摘要
CD8+T细胞主要通过T细胞表面受体(T cell recep tor,TCR)识别并与Ⅰ型主要组织性复合物提呈的抗原(pMHC-Ⅰ)相互作用[1]。TCR对刺激型抗原的识别在CD8+T细胞毒性和适应性免疫中发挥着关键作用。许多证据表明机械力可以延长TCR与刺激性pMHC作用的键合时间(bond lifetime)形成抗原特异性逆锁键(catch bond)[2],并且这种逆锁键对抗原识别非常重要。然而,机械力调控TCR抗原识别的具体结构机制仍不清楚。通过分子动力学模拟、单分子生物膜力学探针、磁镊、T细胞活化实验和动物模型对此问题展开了系统的研究[4]。发现作用在TCR-pMHC-Ⅰ复合体上的拉力可以作用在TCR-pMHC-Ⅰ复合体上的拉力可以打破MHC-I分子内部α1-α2和β2结构域间的相互作用,导致α1-α2结构域旋转并发生构象变化。力诱导的MHC-I构象变化可以进一步别构地调节TCR与刺激性抗原肽及α1-α2结构域的构象及相互作用,诱导产生新的氢键,增强TCR-pMHC-Ⅰ之间的键合时间,但并不能增强TCR与抑制性pMHC-Ⅰ之间的作用。当用点突变阻断这些新形成的氢键,或者α1-α2和β2结构域被二硫键锁住时,最佳力诱导的TCR-pMHC-Ⅰ作用的键合时间明显缩短并且T细胞的活化受到抑制。另外,在人TCR和HLA-A2相互作用中发现了类似机制,并且与肿瘤相关的HLA-A2点突变[3]可以通过限制HLA-A2α1--α2和β2结构域之间的构象打开减弱TCR对肿瘤抗原的识别及T细胞的功能。研究结果表明,机械力诱导的MHC-I构象变化对TCR抗原识别和T细胞活化非常重要,进一步地阐明了机械力调控TCR抗原识别机制,为临床肿瘤的免疫治疗和药物设计提供了新思路和新靶点。
-
单位浙江大学; 生物大分子国家重点实验室; 中国科学院