摘要
CT图像头颈分割面临着以下难点:CT图像的低对比度导致边界不清,图像扫描间距过大导致冠状面和矢状面图像分辨率低,头颈中待分割的22个器官对于神经网络构建建模的需求不同,且由于存在极小器官造成了类间不平衡。为解决上述问题,该文提出一种U-Net组合模型——由3种U-Net模型组成,分别是2D U-Net模型、3D U-Net模型及3D-small U-Net模型。其中,2D U-Net模型用于厚层图像的分割,3D U-Net模型利用三维空间信息,3D-small U-Net模型用于分割最小的两个器官以解决类不平衡问题。该方法在MICCAI 2019 StructSeg头颈放疗危及器官分割任务中取得了第2名的成绩,平均DSC系数为80.66%,95%豪斯道夫距离为2.96 mm。
-
单位中国科学院深圳先进技术研究院; 深圳先进技术学院; 中国科学院大学