摘要

互联网应用中的评价数据包含丰富的用户观点和偏好信息.为了能更准确地发现用户偏好,综合考虑用户的评分和评论数据,基于贝叶斯网提出了一种针对评价数据的用户偏好建模方法.首先给出了从评论数据中抽取不同评论属性的方法,然后分别从评分和评论出发确定了用户偏好模型的初始结构约束和初始参数约束,最后给出了基于约束条件的用户偏好建模方法.实验结果表明,与单独评分或者评论数据构建的用户偏好模型相比,综合考虑评分和评论数据的用户偏好模型能更准确地估计用户偏好.