摘要
一般的学习算法通过最小化分类损失使分类错误率最小化,而代价敏感学习则以最小化分类代价为目标,需构造代价敏感损失.本文探讨代价敏感损失的设计准则,首先介绍基于代价敏感风险优化的代价敏感学习方法,然后在Bayes最优分类理论框架下,提出两条代价敏感损失设计准则.接着采用两种常用代价敏感损失生成方法构造平方损失、指数损失、对数损失、支持向量机损失等经典损失函数的代价敏感扩展形式.根据所提出的设计准则,从理论上分析这些代价敏感损失的性能.最后通过实验表明,同时满足两条设计准则的代价敏感损失能有效降低分类代价,从而证明了本文提出的代价敏感损失设计准则的合理性.
- 单位