摘要
目的红外与可见光图像融合算法大部分可以达到认知场景的目的,但是无法对场景中的细节特征进行更加细致的刻画。为进一步提高场景辨识度,提出一种基于tetrolet变换的多尺度几何变换图像融合算法。方法首先,将红外与可见光图像映射到tetrolet变换域,并将二者分解为低频系数和高频系数。然后,对低频系数,将区域能量理论与传统的加权法相结合,利用区域能量的多变性和区域像素的相关性,自适应地选择加权系数进行融合;对高频系数,利用改进的多方向拉普拉斯算子方法计算拉普拉斯能量和,再引入区域平滑度为阈值设定高频系数融合规则。最后,将融合所得新的低频和高频系数进行图像重建得到融合结果。结果在kaptein、street和road等3组红外与可见光图像上,与轮廓波变换(contourlet transformation,CL)、离散小波变换(discrete wavelet transformation,DWT)和非下采样轮廓波变换(nonsubsampled contourlet transformation,NSCT)等3种方法的融合结果进行比较,主观评判上,本文算法融合结果在背景、目标物以及细节体现方面均优于其他3种方法;客观指标上,本文算法相较于其他3种方法,运行时间较NSCT方法提升了0.37 s,平均梯度(average gradient,Av G)值和空间频率(spatial frequency,SF)值均有大幅提高,提高幅度最大为5.42和2.75,峰值信噪比(peak signal to noise ratio,PSNR)值、信息熵(information entropy,IE)值和结构相似性(structural similarity index,SSIM)值分别提高0.25、0.12和0.19。结论本文提出的红外与可见光图像融合算法改善了融合图像的细节刻画,使观察者对场景的理解能力有所提升。
- 单位