摘要
针对高速列车轴箱轴承故障特征提取困难和变分模态分解(VMD)参数的人为设置影响分解效果的问题,提出参数自适应VMD轴箱轴承故障诊断方法。首先,以平均包络谱熵为适应度函数,利用麻雀搜索算法自适应地寻找不同工况下的最优模态数K和惩罚因子α;其次,对原始轴承时域信号进行VMD分解,利用快速谱峭度图分析最小包络熵的IMF分量,并根据分析结果对该IMF分量进行带通滤波以增强故障特征;最后,对滤波后信号进行希尔伯特包络解调分析,并将分析结果与理论计算所得特征频率进行对比,对轴箱轴承故障进行分类辨识。研究结果表明:与经验模态分解(EMD)、局域均值分解(LMD)、集合经验模态分解(EEMD)等自适应信号分解方法相比,本文所提方法能更有效地降低噪声的影响,提取复杂耦合工况下轴箱轴承振动信号中的故障特征。
-
单位牵引动力国家重点实验室; 株洲国创轨道科技有限公司; 西南交通大学