摘要

针对目前应用于航空发电机旋转整流器故障诊断中的人工智能算法存在诊断速度慢、参数选取困难等问题,提出一种基于互补式集合经验模态分解(CEEMD)与樽海鞘优化的极限学习机(SSA-ELM)故障诊断方法。在有限元软件Maxwell与Simplorer中搭建三级式电机模型,采集励磁电流信号,利用CEEMD将励磁电流信号分解为一系列模态分量,构建故障特征参量,再通过樽海鞘群算法(SSA)优化极限学习机的训练参数ω和b,并对故障进行诊断,最后通过实验平台验证所提方法。结果证明了三级式同步电机有限元模型的有效性,所提方法相校于现有方法,具有更高的故障诊断准确率与分类速度。

  • 单位
    空军工程大学