摘要
水果采后分级可以提高其附加值,增加经济效益。随着以成像技术、人工智能为基础的机器视觉技术的迅猛发展,其在水果的外观品质分级上也逐渐得到了广泛应用。基于机器视觉测量水果尺寸时,标尺通常在载物台平面,并未与所测水果直径在同一平面;另一方面,水果边缘成像点可能并非水果最大直径平面的点,这两个因素都会导致测量误差,进而影响分级结果。本研究对这两个因素导致的误差进行了分析,提出了一种减小误差的方法:若已知被测水果平均半径R,可将相机镜头置于与载物台距离为nR的高度,并计算校正系数,用测得的尺寸乘以校正系数即可减小误差。番茄果横经的测量试验结果显示,与用机器视觉方法的未校正测量结果相比,本方法可有效减小果横径测量平均绝对误差14.127%。结果表明,该方法具有简单、有效的特点。
-
单位天津市农业科学院